direct product, p-group, elementary abelian, monomial, rational
Aliases: C24, SmallGroup(16,14)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C24 |
C1 — C24 |
C1 — C24 |
Generators and relations for C24
G = < a,b,c,d | a2=b2=c2=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >
Subgroups: 67, all normal (2 characteristic)
C1, C2, C22, C23, C24
Quotients: C1, C2, C22, C23, C24
Character table of C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ15 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
(1 15)(2 16)(3 8)(4 7)(5 12)(6 11)(9 13)(10 14)
(1 5)(2 6)(3 13)(4 14)(7 10)(8 9)(11 16)(12 15)
(1 3)(2 4)(5 13)(6 14)(7 16)(8 15)(9 12)(10 11)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,15)(2,16)(3,8)(4,7)(5,12)(6,11)(9,13)(10,14), (1,5)(2,6)(3,13)(4,14)(7,10)(8,9)(11,16)(12,15), (1,3)(2,4)(5,13)(6,14)(7,16)(8,15)(9,12)(10,11)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,15)(2,16)(3,8)(4,7)(5,12)(6,11)(9,13)(10,14), (1,5)(2,6)(3,13)(4,14)(7,10)(8,9)(11,16)(12,15), (1,3)(2,4)(5,13)(6,14)(7,16)(8,15)(9,12)(10,11) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)], [(1,15),(2,16),(3,8),(4,7),(5,12),(6,11),(9,13),(10,14)], [(1,5),(2,6),(3,13),(4,14),(7,10),(8,9),(11,16),(12,15)], [(1,3),(2,4),(5,13),(6,14),(7,16),(8,15),(9,12),(10,11)]])
G:=TransitiveGroup(16,3);
C24 is a maximal subgroup of
C22≀C2 C22⋊A4 C24⋊C5
C24 is a maximal quotient of 2+ 1+4 2- 1+4
Matrix representation of C24 ►in GL4(ℤ) generated by
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | -1 |
G:=sub<GL(4,Integers())| [1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1],[-1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,-1] >;
C24 in GAP, Magma, Sage, TeX
C_2^4
% in TeX
G:=Group("C2^4");
// GroupNames label
G:=SmallGroup(16,14);
// by ID
G=gap.SmallGroup(16,14);
# by ID
G:=PCGroup([4,-2,2,2,2]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations
Export